有更大的突破?LCD响应时间的极限LCD响应速度




有更大的突破?LCD响应时间的极限LCD响应速度

2022-07-21 0:42:57 网络知识 官方管理员

一种技术从运用到成熟竟然长达20年之久,这种现象在计算机领域里是罕见的。从1986年NEC制造了第一款有液晶屏幕的便携式计算机,到2005年末液晶显示器的市场占有率首次与CRT持平,液晶显示技术在PC中的应用经历了20年的缓慢成长过程。

液晶显示器的历史虽然不算太短,但因长期只用于便携设备的静态图文显示,响应速度慢的问题没有引起足够重视。近年来,液晶显示器在台式机中应用越来越普遍,视频播放、游戏的应用也呈爆发性增长,此时响应时间问题才因此倍受关注。

有人曾提出,电脑的速度已经足够快,不用再花力气去提高CPU频率了。这样的预言家现在仍不乏其人,几年前就有些人认为,响应时间已经到了终极,而事实并非如此。虽然液晶显示器响应时间从早期上百ms缩短到了4ms,但与CRT显示器相比依然逊色不少。就目前来说,3D加速显示卡每秒可以运算出的画面帧数都在200以上,要玩Quake3等游戏,更是需要300帧/s的刷新率才会非常流畅,4ms的响应时间显然是不够的。而在即将到来的高清电视时代,短响应时间仍然是液晶电视的卖点。

LCD,响应时间

图1响应时间由上升时间(Risetime)和下降时间(Falltime)两部分构成  响应时间,这个看似简单的问题为何迟迟不能一下子搞定,为什么会历时多年仍缓慢前进,是哪些因素阻碍了LCD响应速度的提升?这还得从头说起。

响应时间的三种表述  响应时间是描述显示器亮度变化滞后于电场变化(施加或撤除)一个参数,业界对这个参数有三种表述法:  (1)黑白响应时间,也称作全程响应时间,是上升时间tr(全黑到全白)与下降时间td(全白到全黑)之和;  (2)ISO响应时间,既国际标准化组织发布的ISO13406-2;  (3)灰阶响应时间(GTG,graytogray),由于画面变化是由灰阶到灰阶的转换,因此这时的LCD响应时间则应该被称为从灰阶到灰阶的响应时间,表示液晶单元从一个角度转到另一角度所需时间,而非全开/全闭这种极端状态。  用不同标准去衡量同一台显示器,会得出不同的结果。例如,对于图2所示的常黑型显示面板,按照全黑到全白的计算方法,上升时间应该是40ms,而按照ISO标准,计算亮度从10%上升到90%时的响应时间,上升时间就只有28.5-12=16.5ms。

LCD,响应时间

生性笨拙的显示介质

图2ISO定义的响应时间  响应时间与刷新率之间既有联系,又有区别。应该说,任何响应时间的显示器,都可以相同的刷新率工作,只是响应时间低于要求的数值时,会产生拖尾。因此,与刷新率所对应的响应时间数值,只是对响应时间的最低要求。譬如,当刷新率为60Hz时,对应的响应时间为1/60≈0.017s(17ms)。  应该指出的是:(1)刷新率所要求的响应时间数值,应是全程响应时间,而不是上升时间tr或下降时间td。(2)从数值上看,某些显示器给出响应时间可能已经符合刷新率的要求,但还是出现了拖尾现象,这是灰阶响应时间较长的缘故。正因为如此,即使是4ms的液晶显示器,也仍然存在响应时间的问题。

液晶作为弹性连续体,具有可沿展性、可扭曲性和可弯曲性。液晶显示主要利用了液晶分子能够扭曲的特性,以及扭曲液晶的旋光性,入射光的偏振面沿液晶的扭曲螺旋轴旋转,液晶旋转角度就决定了液晶盒的透光量,从而决定了该像素的亮度高低。

液晶材料可以分成高分子液晶与低分子液晶两种,想要提高液晶显示器的响应速度,就要选择分子量较小的液晶。这好比跳水运动员,小巧的身体能使动作更敏捷,能够更灵活地完成空中转体等高难度动作。

液晶是一种有机分子,由于其分子结构具有对称性,使得分子集合体在没有外界干扰的情况下形成分子相互平行排列,以使系统自由能最小。液晶按结构的不同可分为三类:向列相、胆甾相和近晶相,目前用于显示器件中的通常为向列相液晶和胆甾相液晶。向列相液晶的排列方式是分子重心无平移周期性,具有分子取向有序性。胆甾相实际是向列相的特殊形式,分子重心无平移周期性,具有分子取向有序性。

无论向列相,还是胆甾相液晶,均存在响应速度慢的问题,其中转矩大小和粘性高低是影响LCD动态性能的两个内在因素。虽然在实际应用上,通常选择的都是低分子液晶,其分子长2~3纳米,直径约0.5纳米,但利用这种分子级别的材料制成的显示器,其响应速度只能达到ms级,而CRT、OLED等属于电子级别工作原理,响应速度一般都可达到μs级别,PDP为原子级,速度稍慢,也不存在响应时间问题。

发表评论:

最近发表
网站分类
标签列表